skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Lingwei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abundant proxy records suggest a profound reorganization of the Atlantic Meridional Overturning Circulation (AMOC) during the Last Glacial Maximum (LGM, ~21,000 y ago), with the North Atlantic Deep Water (NADW) shoaling significantly relative to the present-day (PD) and forming Glacial North Atlantic Intermediate Water (GNAIW). However, almost all previous observational and modeling studies have focused on the zonal mean two-dimensional AMOC feature, while recent progress in the understanding of modern AMOC reveals a more complicated three-dimensional structure, with NADW penetrating from the subpolar North Atlantic to lower latitude through different pathways. Here, combining231Pa/230Th reconstructions and model simulations, we uncover a significant change in the three-dimensional structure of the glacial AMOC. Specifically, the mid-latitude eastern pathway (EP), located east of the Mid-Atlantic Ridge and transporting about half of the PD NADW from the subpolar gyre to the subtropical gyre, experienced substantial intensification during the LGM. A greater portion of the GNAIW was transported in the eastern basin during the LGM compared to NADW at the PD, resulting in opposite231Pa/230Th changes between eastern and western basins during the LGM. Furthermore, in contrast to the wind-steering mechanism of EP at PD, the intensified LGM EP was caused primarily by the rim current forced by the basin-scale open-ocean convection over the subpolar North Atlantic. Our results underscore the importance of accounting for three-dimensional oceanographic changes to achieve more accurate reconstructions of past AMOC. 
    more » « less
    Free, publicly-accessible full text available November 5, 2025
  2. Proxy reconstructions suggest that increasing global mean sea surface temperature (GMSST) during the last deglaciation was accompanied by a comparable or greater increase in global mean ocean temperature (GMOT), corresponding to a large heat storage efficiency (HSE; ∆GMOT/∆GMSST). An increased GMOT is commonly attributed to surface warming at sites of deepwater formation, but winter sea ice covered much of these source areas during the last deglaciation, which would imply an HSE much less than 1. Here, we use climate model simulations and proxy-based reconstructions of ocean temperature changes to show that an increased deglacial HSE is achieved by warming of intermediate-depth waters forced by mid-latitude surface warming in response to greenhouse gas and ice sheet forcing as well as by reduced Atlantic meridional overturning circulation associated with meltwater forcing. These results, which highlight the role of surface warming and oceanic circulation changes, have implications for our understanding of long-term ocean heat storage change. 
    more » « less